Thermodynamics and Statistical Physics

Part I-Thermodynamics

Resit

Wednesday, April 12 2023, 15:00-17:00, Aletta Jacobshal

The total number of points that can be reached in this exam is 90 .
Final grade $=($ points $/ 10)+1$.
PROBLEM 1
Score: $a+b+c=10+10+10=30$

1) The pressure in in the thermosphere outside the international space station (about 340 km above sea level) is about $10^{-5} \mathrm{~Pa}$ and the temperature is about $1100^{\circ} \mathrm{C}$. Estimate the mean free path of an N_{2} molecule ($\mathrm{M}_{\mathrm{N} 2}=28 \mathrm{~g} / \mathrm{mol}, \mathrm{d}=0.37 \mathrm{~nm}$) under these conditions (10 pt).
2) Express the first law of thermodynamics as an equation and with words. ($\mathbf{1 0} \mathbf{~ p t)}$
3) Explain the concept of thermodynamic "reversibility" for the case of an expanding ideal gas. ($\mathbf{1 0} \mathbf{~ p t)}$

PROBLEM 2

Score: $a+b+c=12+12+6=30$
Your apartment had a very old window of area $A=1.5 \mathrm{~m}^{2}$ with thermal conductance $\frac{\kappa}{L}=6 \mathrm{Wm}^{-2} \mathrm{~K}^{-1}$. This window is replaced by a state of the art double-pane window with $\frac{\kappa}{L}=1 \mathrm{Wm}^{-2} \mathrm{~K}^{-1}$.
a) Use the thermal diffusion equation in one dimension

$$
\frac{\partial T}{\partial t}=D \frac{\partial^{2} T}{\partial x^{2}}
$$

To determine a functional form of the temperature profile through the window $T(x)$, with the temperatures $T_{\text {outside }}$ and $T_{\text {inside }}$ both constant. (10 pt).
b) Give a functional form for the heat flux through the window using $T(x)$. (10 pt).
c) How much energy do you save per winter day (24 hours), assuming a constant temperature outside of $-5^{\circ} \mathrm{C}$ and inside of $20^{\circ} \mathrm{C}$? (10 pt).

PROBLEM 3

Score: $a+b+c+d=8+8+8+6=30$
A Carnot cycle describes a hypothetical engine which connects two reservoirs and undergoes the following reversible processes:
i. isothermal expansion at temperature T_{h}
ii. adiabatic expansion to temperature T_{c}
iii. isothermal compression at temperature T_{c}
$i v$. adiabatic compression to the initial state
During step i, a quantity of heat Q_{h} flows from the reservoir at T_{h} into the engine. During step $i i i$, a quantity of heat Q_{c} flows from the engine into the reservoir at T_{c}.
a) Sketch the thermodynamic cycle in the usual way (p, V)-diagram. Clearly indicate the direction of the cycle. Indicate where and in which direction the engine exchanges heat and/or work with the outside world. (8 pt)
b) Give the entropy change per cycle of both reservoirs in terms of the given quantities. (8 pt)
c) Assume that the entropy change in the hot reservoir is exactly compensated by the entropy change in the cold reservoir. Show, that the efficiency of the cycle equals $\eta=1-T_{c} / T_{h}$. (8 pt)
d) The coal power plant in Eemshaven produces about 12 TWh of electricity per year from about 3 million tons of coal (thermal energy content of coal: $9 \mathrm{kWh} \mathrm{kg}^{-1}$). Determine the efficiency of the power plant and estimate T_{c} and T_{h} assuming the power plant is an idealized Carnot engine. Is the result for T_{h} realistic? (6 pt)

Constants:
Avogardro's number: $N_{A}=6.0210^{23} \mathrm{~mol}^{-1}$
Boltzmann constant: $k_{B}=1.38110^{-23} \mathrm{~J} \backslash \mathrm{~K}$
Gas constant: $\quad \mathrm{R}=8.31 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Atomic mass unit (u): $\mathrm{m}_{\mathrm{u}}=1.6710^{-27 \mathrm{~kg}}$
Electronvolt: $\quad 1 \mathrm{eV}=1.610^{-19} \mathrm{~J}$

